3.172 \(\int \frac {A+B x^2}{x \sqrt {a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=90 \[ \frac {B \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a}} \]

[Out]

-1/2*A*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))/a^(1/2)+1/2*B*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c
*x^4+b*x^2+a)^(1/2))/c^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1251, 843, 621, 206, 724} \[ \frac {B \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-(A*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[a]) + (B*ArcTanh[(b + 2*c*x^2)/(2*Sqrt
[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[c])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{x \sqrt {a+b x^2+c x^4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {A+B x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac {1}{2} A \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )+\frac {1}{2} B \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\left (A \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )\right )+B \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )\\ &=-\frac {A \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a}}+\frac {B \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 89, normalized size = 0.99 \[ \frac {1}{2} \left (\frac {B \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {a}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(-((A*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/Sqrt[a]) + (B*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[
c]*Sqrt[a + b*x^2 + c*x^4])])/Sqrt[c])/2

________________________________________________________________________________________

fricas [A]  time = 1.07, size = 517, normalized size = 5.74 \[ \left [\frac {B a \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) + A \sqrt {a} c \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right )}{4 \, a c}, -\frac {2 \, B a \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) - A \sqrt {a} c \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right )}{4 \, a c}, \frac {2 \, A \sqrt {-a} c \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) + B a \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right )}{4 \, a c}, \frac {A \sqrt {-a} c \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) - B a \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right )}{2 \, a c}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(B*a*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c)
+ A*sqrt(a)*c*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x
^4))/(a*c), -1/4*(2*B*a*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2
+ a*c)) - A*sqrt(a)*c*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) +
8*a^2)/x^4))/(a*c), 1/4*(2*A*sqrt(-a)*c*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a
*b*x^2 + a^2)) + B*a*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c
) - 4*a*c))/(a*c), 1/2*(A*sqrt(-a)*c*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*
x^2 + a^2)) - B*a*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)
))/(a*c)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m operator + Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.01, size = 76, normalized size = 0.84 \[ -\frac {A \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{2 \sqrt {a}}+\frac {B \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/2*B*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)-1/2*A/a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x
^2+a)^(1/2))/x^2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 0.76, size = 81, normalized size = 0.90 \[ \frac {B\,\ln \left (\sqrt {c\,x^4+b\,x^2+a}+\frac {c\,x^2+\frac {b}{2}}{\sqrt {c}}\right )}{2\,\sqrt {c}}-\frac {A\,\ln \left (\frac {1}{x^2}\right )}{2\,\sqrt {a}}-\frac {A\,\ln \left (2\,a+2\,\sqrt {a}\,\sqrt {c\,x^4+b\,x^2+a}+b\,x^2\right )}{2\,\sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/(x*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

(B*log((a + b*x^2 + c*x^4)^(1/2) + (b/2 + c*x^2)/c^(1/2)))/(2*c^(1/2)) - (A*log(1/x^2))/(2*a^(1/2)) - (A*log(2
*a + 2*a^(1/2)*(a + b*x^2 + c*x^4)^(1/2) + b*x^2))/(2*a^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B x^{2}}{x \sqrt {a + b x^{2} + c x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((A + B*x**2)/(x*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________